Telegram Group & Telegram Channel
GPT-4 vs ARC: как оно сейчас и конец ли это?

Напомню про существование ARC - бенчмарка системы на способность обучаться задаче по паре примеров. Он задизайнен таким образом, чтобы исключить необходимость понимать человеческие концепты - язык, образы т.д. и проверять только на обучаемость. В этом бенчмарк сильно непохож на GAIA, про который я тоже писал пост. Примеры задач на картинке.

Вы нечасто увидите проверку на нём, поскольку в вопросах обучаемости наши алгоритмы ужасно отстают от человека и просвета в этом вопросе нет. Давайте посмотрим на последние результаты проверки моделей GPT-4 и GPT-4V на нём.

Итак, тестирование проводят на 480 задачках из 16 категорий. Люди решают в среднем 91% задач. Первое место с kaggle-соревнования по ARC набирает около 52% - это по сути полный перебор всевозможных коротких "программ" из 4 преобразований. GPT-4 при новом улучшенном дизайне промпта с примерами решения других задач набирает 33%.

Далее из 480 задач выбирают 48 самых простых, требующих "одношагового" понимания концепта и прогоняют на них ещё и мультимодальную GPT-4V - если до этого задачки преобразовывали в текст, теперь показывают оригинал. Результаты становятся ещё более печальными - 95% человек / 69% GPT-4 / 25% GPT-4V.

Означает ли это бесполезность применения таких моделей? Не совсем. Как уже показали примеры AlphaCode и FunSearch, LLM может использоваться в качестве "генератора идей", с её помощью можно сгененировать много не всегда качественных решений-кандидатов. Но нужен и механизм "валидации" этих идей, чтобы выбрать финальную и её тестировать.

Проблема только в том, что, в отличие от FunSearch, у нас есть всего пара примеров и сгенерированная программа либо полностью неверна, либо полностью верна, что не позволяет проводить никакую оптимизацию решения. А непохожим на AlphaCode этот случай делает то, что у модели нет огромного количества решений подобных задач в обучающих данных, поэтому никакой Pattern matching решений ей недоступен.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/140
Create:
Last Update:

GPT-4 vs ARC: как оно сейчас и конец ли это?

Напомню про существование ARC - бенчмарка системы на способность обучаться задаче по паре примеров. Он задизайнен таким образом, чтобы исключить необходимость понимать человеческие концепты - язык, образы т.д. и проверять только на обучаемость. В этом бенчмарк сильно непохож на GAIA, про который я тоже писал пост. Примеры задач на картинке.

Вы нечасто увидите проверку на нём, поскольку в вопросах обучаемости наши алгоритмы ужасно отстают от человека и просвета в этом вопросе нет. Давайте посмотрим на последние результаты проверки моделей GPT-4 и GPT-4V на нём.

Итак, тестирование проводят на 480 задачках из 16 категорий. Люди решают в среднем 91% задач. Первое место с kaggle-соревнования по ARC набирает около 52% - это по сути полный перебор всевозможных коротких "программ" из 4 преобразований. GPT-4 при новом улучшенном дизайне промпта с примерами решения других задач набирает 33%.

Далее из 480 задач выбирают 48 самых простых, требующих "одношагового" понимания концепта и прогоняют на них ещё и мультимодальную GPT-4V - если до этого задачки преобразовывали в текст, теперь показывают оригинал. Результаты становятся ещё более печальными - 95% человек / 69% GPT-4 / 25% GPT-4V.

Означает ли это бесполезность применения таких моделей? Не совсем. Как уже показали примеры AlphaCode и FunSearch, LLM может использоваться в качестве "генератора идей", с её помощью можно сгененировать много не всегда качественных решений-кандидатов. Но нужен и механизм "валидации" этих идей, чтобы выбрать финальную и её тестировать.

Проблема только в том, что, в отличие от FunSearch, у нас есть всего пара примеров и сгенерированная программа либо полностью неверна, либо полностью верна, что не позволяет проводить никакую оптимизацию решения. А непохожим на AlphaCode этот случай делает то, что у модели нет огромного количества решений подобных задач в обучающих данных, поэтому никакой Pattern matching решений ей недоступен.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/140

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA